Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37448015

RESUMO

The limitation of indoor visible light coverage and the attenuation of its signal when propagating in line-of-sight has seriously affected the stable communication of receiving devices when users move randomly and also aggravated the power consumption of visible light networking systems. According to the above situation, on the basis of the heterogeneous networking of visible light communication (VLC) and RF communication integration, this article proposes a horizontal-vertical collaborative handover strategy based on the communication blind area dwell time (CBD-HVHO). Combining asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) technology with networking handover technology, ACO-OFDM is used to determine the indoor communication blind area by calculating the bit error rate (BER) value at the signal receiver while reducing the multipath interference generated by visible light signals during channel transmission. To achieve this, set the communication blind channel interruption time as the threshold time, compare the communication blind area dwell time with the threshold time, and finally combine the horizontal and vertical collaborative handover strategies based on the communication blind area dwell time. The simulation results show that the handover probability is 0.009, the average number of handovers is 1.006, and the average network throughput is 195.2826 Mbps. Compared with the previously proposed immediate vertical handover (I-VHO) scheme and the dwell vertical handover (D-VHO) scheme, the communication stability is significantly improved, and the power consumption of the network system is reduced to a certain extent.


Assuntos
Comunicação , Luz , Simulação por Computador , Probabilidade , Tecnologia
2.
New Phytol ; 237(2): 414-422, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36263689

RESUMO

AVRPPHB SUSCEPTIBLE 3 (PBS3) belongs to the GH3 family of acyl acid amido synthetases, which conjugates amino acids to diverse acyl acid substrates. Recent studies demonstrate that PBS3 in Arabidopsis plays a key role in the biosynthesis of plant defense hormone salicylic acid (SA) by catalyzing the conjugation of glutamate to isochorismate to form isochorismate-9-glutamate, which is then used to produce SA through spontaneous decay or ENHANCED PSEUDOMONAS SUSCEPTIBILITY (EPS1) catalysis. Consistent with its function as an essential enzyme for SA biosynthesis, PBS3 is well known to be a positive regulator of plant immunity in Arabidopsis. Additionally, PBS3 is also involved in the trade-off between abiotic and biotic stress responses in Arabidopsis by suppressing the inhibitory effect of abscisic acid on SA-mediated plant immunity. Besides stress responses, PBS3 also plays a role in plant development. Under long-day conditions, PBS3 influences Arabidopsis flowering time by regulating the expression of flowering regulators FLOWERING LOCUS C and FLOWERING LOCUS T. Taken together, PBS3 functions in the signaling network of plant development and responses to biotic and/or abiotic stresses, but the molecular mechanisms underlying its diverse roles remain obscure.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácido Corísmico/metabolismo , Ácido Salicílico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...